

开车时遇到一个 红灯 为什么就会一路 红灯

开车或骑自行车的时候,你有没有遇到过这样的场景:如果碰 到一个绿灯顺利通过,就能一路绿灯;相反,只要有一个红灯拦你, 接下来遇到的都是红灯……这背后有什么科学原理吗?

被停用的煤气灯?

交通信号灯俗称红绿灯,是 以红、黄、绿三色(欧洲一些国家 还可能会使用带有橙色的琥珀 黄)灯或辅以声音讯号,指示车辆 及行人停止、注意与前进。世界上 第一盏交通信号灯诞生于1868 年12月,而它被发明的主要原因 是伦敦威斯敏斯特桥前有大量的 马匹经过,数以千计的行人被迫 行走在威斯敏斯特宫旁,导致经 常发生人与马匹堵塞。

该交通信号灯高6.7米,由两 个连接到旋转臂上的移动标志, 以及夜晚使用的柱顶上的煤气灯 组成。当时,并没有"自动化"这一 概念,所以交通信号灯的变化全

是人为操纵的。

虽然这是一项成功管控交通 流量的发明,但它的煤气灯却在 运行了24天后爆炸,炸伤了控制 信号灯的警察,这种交通信号灯 便被停用。直到电力的普及,第一 个电力交通信号灯才在美国克利 夫兰市投入使用。

如何控制信号灯?

随着社会节奏的加快,效率逐渐成 为人们重点考虑的问题。有效地疏导和 提高十字路口的通行效率显得越来越重 要。在普通的交通灯设计系统中,显示时 间是固定的,这样就无法有效地利用道

为了解决这个问题,人们引入了车 流量监测,通过车流量的大小,来自动调 节红绿灯的显示时间。

最常见的有感应回路系统和视频摄 像系统。前者在地面铺设了环形线圈传 感器,当有车辆通过线圈时,车的铁外壳 使得磁感线圈电感发生变化,从而监测 车辆。感应回路系统由于其简单性而被 广泛使用

后者是我们在交通信号灯中看到的

最复杂的系统。杆上安装的视频监测摄 像机依靠视频技术来监测汽车,并与多 个交通站点联网。不仅能识别车辆,并实 时计算停靠点的车辆数量,还可以区分 汽车和行人

那么,我们开头说到的"遇到一个红 灯,就会一路红灯"的现象难道是因为交 通信号灯在监测汽车流量这块儿出了 问题?其实,这并非偶然现象,而是道路 设计师们花了几十年特地研究出来,防 止交通拥堵的手段

交通控制系统的核心问题就是如何 在最短的时间让最多的车辆通过路段。 原则就是如果前方路况好,就让新来的 车快走;如果前方路况不好,就让新来 的车慢点走。于是,人们想出了一个办 法叫作:绿波带,即车辆匀速行驶,进入 绿波带区域时第一个信号灯为绿灯,那 一个路口也能遇到绿灯。最大限度 地保证车流到达路口都是绿灯,尽可能

绿波带道路上的路口信号灯通常会 设有绿波速度提示牌,保持50-55km/h 的速度最容易赶上绿波带。但是,如果 碰上极端路况、车祸,或有人闯红灯等 事件,无法保持绿波速度的情况下,你 可能会遇到绿波带的"死对头"-波带,让你走一路,停一路,减缓你的通 行速度

当然,不是所有路段都可以设置绿 波带。一条适合设计绿波带的路段需要 满足许多条件,比如:不是主干道(主干

道车流量过于饱和,车辆排队过长无法 在有效绿灯内通过路口)、干扰因素少 (无乱穿马路的行人和非机动车辆)、道 路条件相近(车流量情况相近)等。

2011年,一项研究表明,绿波带可以 减少汽车二氧化碳排放、减少燃油消耗、 减少车辆部件磨损以及制造过程中的间 接能源消耗。

所以,绿波带控制一般使用在中心 城区到外围城区的主干道上,目的是让 中心区的车辆尽快驶出核心区。而相对 应地驶入中心城区的方向,往往不会设 置绿波带。相反,有的地方会设置红波 带,就是让进入核心区的车辆多等几次 红灯,以减缓市中心的交通压力

据《科普中国》

清理太空垃圾

在地球轨道上,分布着成千上万的太空垃 圾,据统计,直径大于10厘米的太空垃圾就超过 2万块。它们要是与卫星碰撞,足以摧毁卫星,并 制造出更多的碎片

太空恶劣的环境使得我们无法用一般的方 法来清除这些垃圾。虽然也有人提出过其他一些 高科技的办法,比如用高功率的激光扫射,让碎 片汽化等。但这些技术目前都尚未成熟。

不过,美国研究人员已研制出一种可在太空中使用的"干胶"材料,其灵感来自壁虎的脚。壁 虎之所以能够在光溜溜的墙壁上爬行,得力于它 脚趾上的肉垫。其肉垫下面,覆盖着一层富有弹 性的微小肉绒。这些小肉绒可与任何表面的分子 相互作用,从而产生吸力。此外,它们还能自由地

模仿壁虎的肉垫,研究人员制成了一种吸附 力极强的薄片。他们把它固定在机器人的手上。 实验表明,仅一张长宽各0.1毫米的薄片,就能附 着在比它尺寸和重量大100倍以上的太空漂浮物 上。在空间站上,靠这样一张薄片,就能让机器人 悬挂在太空舱的壁上长达数周。

有不接触就能 演奏的乐器吗?

1920年,苏联工程师莱昂·泰勒明创造了 种前所未有的乐器,这种乐器被命名为泰勒 明电子琴,是世界上第一台电子乐器。泰勒明 电子琴以其古怪的音色,无接触的演奏方式应 用于科幻电影中。

泰勒明电子琴既没有键盘,也没有琴弦 它有两条可以感知人手在周围空间运动的天 线。位于乐器右手边的是音高天线,人手和天 线的距离远近会改变音高;位于左手边的呈水 平环形的是响度天线,会受手掌上下运动的影 响,增加或减小音量。

人体有肌肉和脂肪,因为肌肉是很好的保 水器,即电的良导体,而脂肪是不好的保水器, 即电的不良导体。所以人体是一种特殊的天然

当你的手在天线附近摇摆时,身体电容会 影响天线产生电磁波,经过泰勒明电子琴中两 个振荡器的处理变为我们可以听到的音乐。虽然 这种乐器并不好操控,但是著名音乐人克拉 拉·洛克莫尔、塞缪尔·霍夫曼、露西·毕格 罗·罗森等都是"弹奏"它的大师。

为什么飞机起飞时 要调暗灯光?

为了乘客们的安全。

航空业的绝大多数规则和做法都是以预防 意外情况发生为基础的。通过这些研究和考察,制定并实施使航空更安全、更有效的规则。

当人眼从光环境移动到黑暗环境时,要经过 段时间让视觉敏感度逐渐提高,才能看到暗处 的物体,即暗适应过程。

经研究显示,在进入暗处的最初7分钟之内, 人眼感光阈值会出现一次明显下降;在进入暗处 25分钟—30分钟之后,阈值才会下降至最低点。

在飞机起飞前3分钟和降落前8分钟时, 飞行是最危险的。民航业内有一个专业的术 -危险11分钟,也有人将其称为"魔鬼11分 钟"。这段时间内关闭灯光可以让人们提前进行 暗适应过程。这样在出现紧急情况时,乘客能够 跟随紧急出口灯光,快速找到出口。

同时,飞行员也会将驾驶舱的灯光关闭,方 便看到指示灯信号。当然,也有说法是关闭灯光 是为了让飞机能够将能源集中在发动机上,保证 飞机平稳飞行。