乔文英

为了把疫苗做成能吃的, 科学家做了哪些努力?

"不想打针,疫苗能不能做成吃的呀?"这大概是很多害怕打 针的人的心声了。

如何做到不用打针就能接种疫苗,或者只要吃下去就可以 呢?其实,科学家们早就开始了各种尝试,并且已经获得成功。

疫苗是如何起作用的?

人体的免疫系统能够对进入 的病菌产生各种防御机制,在第一 次遇到病菌时不仅能杀死病菌,同 时能产生记忆。当下次再遇到相同 的病菌时,免疫系统会迅速大量产生与这个病菌相匹配的抗体,帮助 杀灭病菌。但在第一次遇到病菌 时,人体产生抗体和其他免疫反应

需要一定的时间,因此会导致发 病,情况严重的时候我们甚至无法 敖过去。

而随着免疫学的发展,人们发 现这些抗体的产生并不需要活的 病菌,完全死掉的病菌、甚至病菌 上的一部分蛋白质等也可以产生 具有保护效果的抗体。我们便把这 些"解除了武器"的病原菌做成了 疫苗。注射疫苗的目的就是人为的 让人体先接触没有感染性、或者低 感染性的病菌、或病菌的组成部 分,在遇到真正会发病的病菌前就 产生免疫记忆。这样在遇到病菌时 就能迅速产生抗体抵抗病菌,达到 不发病的效果。

把疫苗"吃下去",可能吗?

许多病原体是通过鼻子、嘴等 进入人体的,并通过这些部位的黏 膜进入体内细胞。它们遇到的第一 道防御是那些位于呼吸道、消化道 和生殖道的黏膜中的防御。当黏膜 免疫反应有效时,黏膜将产生抗 体,消灭它们发现的任何病原体。

目前疫苗主要用注射的方式 直接接种到体内,这样一 过了黏膜,通常会在刺激黏膜免疫

反应方面表现不佳。但是口服疫苗 能够接触到消化道的内壁黏膜,它 们会激活黏膜和全身免疫,应该有 助于提高对许多危险病菌的保护, 尤其是引起腹泻的病菌。所以理论 上口服疫苗是完全可行的。

实际上,目前已有几种上市的 口服疫苗。第一个上市的是1961年 开始在国外投入市场的脊髓灰质 炎疫苗,也就是非常有名的糖丸。

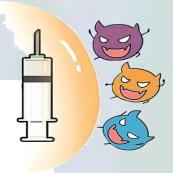
脊髓灰质炎疫苗是一种减毒的活 疫苗,在体内具有复制的能力。因 此,小剂量的疫苗可以导致大量抗 原的快速增殖和分泌,这足以触发 肠道免疫系统发挥作用。其他三种 口服疫苗都是在2000年以后上市, 包括轮状病毒疫苗(针对轮状病毒 感染性肠胃炎),以及针对肠溶性 伤寒沙门氏菌和霍乱弧菌的疫苗。

〇3 如何生产能吃的疫苗?

既然已经有口服疫苗,为什么 现在疫苗主要还是靠打针呢?

这是因为疫苗经过消化道时常 受到消化液的分解。这是能吃的疫 苗面临的最大挑战。针对这一问题, 科学家们也已经有了多种策略。

1. 通过胶囊等保护疫苗


尽管胃部的酸性条件对疫苗 是个挑战,但事实上,允许药物通 过胃而不受破坏的技术已经存在了几十年,并应用于许多广泛使用 的药物中。这包括将做成粉末的疫 苗填充到胶囊中,胶囊外包覆聚合 物薄膜,这种聚合物薄膜在人体胃 中的低pH值下不溶解,但在pH值 高于5-5.5时容易溶解,从而保证 疫苗在进入肠道前不会被破坏。

2.用特定细菌和病毒生产疫苗

某些细菌和病毒早已与人类 肠道形成了共生。这些生物体已经 适应了宿主的肠道,可以在人类肠 道中存活很长时间,并且不会致 病。我们可以通过基因工程的技 术,将生产疫苗抗原的基因整合到 这些细菌或病毒中。在口服了这些 改造后的细菌或病毒后,它们能较 稳定的存在于肠道中一段时间,并 大量地产生疫苗,从而使人体有效 获得免疫

类似,我们也可以通过基因工程技

术,将能生产疫苗的基因转入到植 物体内,利用植物生产疫苗。植物 细胞坚硬的外壁使疫苗相对安全, 不受胃液的影响,可以真正实现 "能吃"的疫苗。实验结果已经发 现,在食用了具有疫苗抗原基因的 土豆、西红柿、生菜等之后,小鼠或人体内确实产生了相应的抗体,从 而证实了用植物生产口服疫苗的

3 用植物生产疫苗 和利用细菌和病毒生产疫苗 可行性。

来可能会有更多的"能吃的"疫苗上市,让我们拭目以待!

术上的障碍似乎都是可以克服的,科学家的研究也从未止步。将

于人体十分复杂,口服疫苗的有效性和安全性还需要大量的工 作,这方面的临床试验还较少,我们还有很长的路要走。不过,技

口服疫苗可以更好地解决疫苗的储存、发放等问题。然而,由

据"新浪探索"

手机的拨号键盘 上为什么要有*和#?

明明打电话只需要用到数字0-9,为什

么拨号键盘上除了数字还有*和#? 出现这两个键,要追溯到上世纪60年代。 贝尔实验室在研制电话与电脑的交互,由于 0—9只有十个数字,按照x乘以x的方式怎么 排列都不完美,3乘以3会多一个,3乘以4就 缺两个。少一个数字肯定不行,所以最后选择 了3乘以4的排列方式,于是多出来的两个就 变成了*和#。

后来的事实证明,这两个键也起到了很 大的作用。比如上世纪八九十年代,打电话多 是依靠公用电话,需要用到电话卡,这时候每 操作一步都需要用到#号键,用来起到暂停或 者转换的作用。

手机普及了之后,这两个键的功能就更 了。比如最早的直板手机,锁屏和解锁都是 功能键加*号键。即使现在的智能手机也有 些功能要用到*和#。

现在这两个键最多的作用就是转接。比 如打电话给移动或者银行客服,就经常会听 到这句话,"输入密码并按#号键结束",或者 拨打企业电话之后,也需要用到这两个键来 转到分机。

眼睛为什么 不怕冷?

作为恒温动物,我们的身体会自动调节体 温,而眼球则一直保持着较高的温度。因为它 不仅有眼窝中的肌肉等组织来保暖,不停地转 动和眨眼也制造了更多的热量。而且,眼球上 的毛细血管丰富,血液循环使得眼球可以保持 体温不怕冷。另一方面,眼睛并没有多少冷觉 感受器,只在角膜和结膜上分布着一些,所以 对冷的感受也不敏感。

03 理发店的旋转灯柱 为什么都是红蓝白三色?

这一切,还要从放血疗法说起。所谓放血 疗法,是指通过放出静脉血的方式治疗疾病。 2世纪,甚至有人宣称,放血是一切疾病的解 决方案。一时间,放血疗法在西方盛行,甚至 没病的时候,人们也要放一放血来保持自己 身体的健康

由于熟练掌握剃刀技巧,很多想放血的 人便求助于理发师。每次放血后,理发师会用 白色绷带清洁病人伤口。后来他们把沾上鲜 血的绷带缠在木棍上,摆在店门口,用以招揽 生意。久而久之,红白条纹的旋转柱就成了理发店的标志。后来法国人梅亚那克尔以此为灵感,发明了红白蓝三色旋转灯柱。

随着医学的不断进步,虽然理发师"兼 任"外科医生的时代早已过去,但理发店外的旋转灯柱却作为标志保留了下来。直到今天, 旋转灯柱在世界各地都被当作理发店的象 征,其至还出现在某些地方的法律文件中。

一张普通 A4 纸 最多能对折多少次?

张 A4 纸通常只能对折 7 次。每对折一 次,纸的面积就会减半,厚度也会翻倍,相当于 通过减少面积来增加厚度。折叠到第7次时, A4 纸已经变得很小,面积不够用来给厚度翻倍了。 如果强行用液压钳等机器把纸压扁,纸张中的 植物纤维就会被扯断、压碎,这时的 A4 纸会被 压成一片又硬又脆的"饼干"。再对折第 8次,纸 张就会彻底断裂。

如果用更大、更软、更薄的纸,就可以对折 更多次。

据《科普中国》等